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SUMMARY

The increasing sophistication of optical component and deéector technol-
ogy, combined with repidly expanding surveillance requirements, suggests that
infrared-based sensor systems may soon provide additional capability to the
Navy in Fleet defense and intelligence gathering applications. The Defense
Advanced Research Projects Agency (DARPA) has been pursuing the extension of
Department of Defense surveillance capabilities during the past few years
through the Hl-resolution Calibrated Airborne Measurements (HI-CAMP) and TEAL
RUBY programs, and these technologies are presently available to help assess
the role of infrared (IR) sensors in the aforementioned roles. With the joint
support of DARPA and the Naval Electronics System Command (Code 615), the
Naval Ocean System Center (NOSC), her sister Centers, and the Naval Research
Laboratory are currently developing a Navy Infrared Surveillaace Data Base for
assessing the utility of IR technology in Fleet defense, as well as other
important Navy applications. This is a multifaceted program involviag bhack-
ground clutter and target signature measuvements, IR phenomenology modeling,
and digital image processing.

An eclement of the Navy program involves the use of the TEAL RUBY
Experio=at to extract data relevant to Navy IR surveillince needs. These
needs include weak and stationary targets. Notably, the TEAL RUBY sensor in
its stariug wmode is severely limited for stationary target detection. The
sensor suffers from high levels of pattern noise (on the order of 2 percent)
even after calibration. Thus, techniques must be developed in the near future
tc reduced image clutter and system noise, if Navy objectives for the TEAL
RUBY Experiment are to be fulfilled. Accordingly, a task was initiated this

fiscal year at NOSC to develop "optimum" image processing strategies for
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detecting stationary and slowly moving, weak targets under various background
conditions. This report outlines the interim results on this effort.
Specifically, a mathematical approach for performing maximum likelihood
detection of slowly moving/stationary targets from multispectral imagery is
described, and its underlying assumptions are presented anc¢ discussed.
Example DAEDALUS imagery is used to evalanate one of these assumptions in

detail, and these results are presented.
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1. INTRODUCTION

The increasing sophistication of optical component and detector
technologies, combined with rapidly expanding remote sensing requirements, has
sparked a commensurate development in exotic signal processing techniques for
extracting desired information out of highly complex visible and infrared
imageryl. At presen*. the most pressing problem in remote sensing for
surveillance is underresolved, weak target detection in highly spatially
structured oftical imagery. The accepted approach to the extraction of
targets in this case is to temporally band-pass the data through either an
analog or digital filter, e.g., frame-to-frame subtraction. This techrique is
known to produce excellent results in the target signature. However, if the
object of interest is stationary, or slowly moving, other means must be
employed to ideatify and localize the target.

Several researchess have proposed using multispectral imagery as a
vehicle for stationary target detection. For example, Barry et al. (1977)
have vused a recursive state space filtering technigue with multispectral
images to reduce background clutter, hence improving target detectability
{Barry et al., 1977a & b). MHore receantly, Hargalit et .l. (1984) developed a
maximum likelihood (ML) approach to nummoving cesolved/partially resolved
target extraction from correlated images. Specifically, they were able to
detect known targets in clutter by performing an "optimum" weighted difference
of locally demeaned?, correlated multichsmnel subimages whose window dimen-

sions are on the order of the target size (Margalit et al., 1984).

! The following references provide excellent reviews of current imace
processing trends and illustrate their utility for enhancing the inherent
information content found in remolely semsed images such as those taken by
LANDSAT and NINBUS-7 sateilites: Andrews and Huat, 1972, Jerlov and Nielsen,
1974; Moik, 1978, 1979, :nd 1989; and Rosenfeld and Kak, 1982.

2 In ihis report, demeaned refers to the removal of a local wean intencity
from each pixel of an image.
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This paper shows that the technique of Margalit et al. (1984) can be
extended to the underresolved, weak target case by restructuring the basic
problem development in terms of the inherent two-dimensional aspects found in
most remotely sensed images. In particular, we wili present this restructured
development and outline the research required to extend its application to an
optimum processing approach for detecting stationary or slowly moving targets

in clutter.

2. DUAL-CHANNEL TARGET DETECTION

A digital optical image is a two-dimensional array of numbers created by
an optical sensor remotely sampling a continuous scene. The most coammon way
of producing this type of dats set is to optically image a scene through a
lens system onto a photodetector array. The electrical signal generated by
this detector array is then sent through an analog-to-digital comverter, and
the result is either image-processed immediately, or stored in a nonvolatile
medium like maganetic tape for future aualysis. The digital signal's most
ioportant property is that each generated elemeat is always greater than, or
equal to, zerc. In this section, we will show hew two specifically chosen
digital images can be interacted teo yield an optimum detection of an unknown
signal, and we will distuss the necessary conditions to do so. For this
development, we will assume the tuwo images have dimensions equal to
(3Ne1)x(3N+1), with the unknown tatrget potentizlly located within the center
(Ne1)x(N+1) portioas of these arrays. As we will see later, our HL approac,
will reduce tu working solely with (N¢1)X(N*]) imagery, climinating the neecd
to waste a significant portion of aay i1mage array in futurve imuage statistics

calculations.




voasider two image arrays f and g that contain two registered, cor-

~

related scenes, respectively. Assume that £ may or may not coutain an addi-

~

tional inteasity distribution s, where § is not strong enough to alter f's

~ ~

inherent statistics but is above any quantization or other sysctem-level noise.

Arrays f and 5 do not necessarily have the same dimensions. The iatensity

-~

array s represents the signa. we wish to extract from the background clutter

~

found in f. Physically, these images could be produced by ecither a multi-

~

spectral scanning array sensor, a dual-channel staring mosaic array sensor, or
a pormal array sensor sampled at two different times. We begin our analysis

by transforming each centered (N+1)x(N+1) subimage of f and z into their

lexicographic form. Specifically, we write

f(N,N)
f(N,N+1)

£(N+1,K)

(1a)

f(2N,2N)

g{N,N)
g(N,N+1)

R = .r ]
S| stenm (1b)

Since we are dealing with target detection from multiple observations, these

vectors can nov be merged into sultivariate form

=
n
13 ten

to facilitate further analysis.




ML signal processing is optimum when one is dealing with noise (i.e.,
background clutter), which is described by stationary, white Gaussian
statistics. Unfortunately, most optical imagery is quasistationary, colored,
znd non-Gaussian. This situation can be remedied to a certain degree by
subtracting a local neighborhood mean from each of the elements found in h
(Margalit et al., 1984; Hunt & Cannon, 1976). We shall discuss this point in
more detail in the following cection and ask the reader to assume for the
present that one can comstruct a difference vector (h-h') that has a multi-
variate normal probability density function with a zero mean and & covariance

R. The covariance matrix R is described by the relation

~ ~

R = E[(a-2') (b-k")"] (3)

and is calculated using a (N+1)X(N+1) window. Specifically, the elements of R
would be calculatcd as follows: retuining to the original two images, on;
wouid derive a local neighborhood mean for each pixel contained in f and g and
form two new image arrays given by (f-f') and (E‘g'). Here, the primed
letters indicate the estimated mean array for its associated image.

Mathematically, they can be writteu as

£ = B[]
and
g = =lgl
for the two images f and g, respectively. In the above two equations, E[...}

~
~
)

danotes the expectation or expected value operator, which will not, in
general, result in constant valued vectors. Given these two new images, one

can then calcrlate the autocovariance matrices for (f-f') and (g-g'), as well

Lo L UL S S S T PN I I S L LU IS MR I I I U o W il WA PO




as their covariance matrix for the center (N+1)X(N+1) portions of both arrays.
Since these calculations involve summing products of pixel values over
(N+1)X(N+1) windows, this explains our initial requirement of having overalil

image dimensions of (3N+1)x(3N+1). The first row of R is equal to

R(0,k) = E[{(£(N,N)~£*' (N,N))X(£(N,N+k)-f' (N,N+k))]
R(0O,N+1+k) = E[(f(N,N)~£' (N,N))X(£(N+1,N+k)-£' (N+1,N+k))]
R(0,2N+1+k) = E[(£(N,N)-£' (N,N))x(f(¥+2,N+k)-£' (N+2,N+k))]
etc.
R(O, (N~1)XN+1+k) = E{(£(N,N)-£' (N,N))x(£f(2N,N+k)~£'(2N,N+k))]
for k between O and N. In these expressions, we have
B{(£(m,0)-£" (m,0) )%(* -, - £ (E,1))] =
; ; (f(m+id,ntj)-f' (oti a+j) )X(£(kti,1+j)=-£" (k+i,1+j)) . (4)
i

The second cow of R is given by

]

R(1,K) = E[(EQN,N41)=£" (N, N+1)X(EQN, N+K) €' (N, NoK)) ]

5]

R(LN#I4K) = E((EQN, N1 -€" (K, N+1))XCE(N+3, Nbk) - £ (N+1,8+K) ) ]

"R(1,2N+1+k) = E[CE(N,N+1)-£" (N, N+1) )X (£ (N2, Nek) - £ (N+2,N+k)) ]
et¢.

T ORQL, (N-1)XRHIAK) = B{CEN,NEL) =5 (N, He1) IXCE G Nok) € (2N, 84K) ) )

for k between ¢ aﬁd N. Here
E{(f(m,n)~f" (m,0))x{glk,1)-g" {k,1)] =
I3 ({(mty) ,n+j)-1" (mti avi))x{g(k+i,1+5)~g" (k41  14j)) . {5)

LN

This procedure costinues until all the elements of the (f-f') portion of

(h-g’) have been used. This procedure coutinues until all the eclements of the
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i (g-g') portion of (k-h') have been used. One oi the unexpected results

" ~ ~

& Margalit et al. (1984) found from the subtraction of locel neighborhood means

o
e,

from images was the transformation of the image vectors into white statistical

processes (Margalit et al., 1984). That is, (f-f') and (g-g') have a

S b S

Kronecker delta function autocovariance. This implies the covariance matrix
reduces to a tridiagonal, symmetric matrix where the major diagonal terms are
the scene variances and the minor diagonal termns are the aligned pixel
cevariances between the two scepes. If the scems: variances are aiso slow-
varying, this matrix further reduces to block Toeplitz matrix form. Let us
now develup the maximum likelihood ratio for the target detection process.

Let HO represent the hypothesis that no signal s' is present in (fi-h').

The probability density function in this -ase is given by

1
2m ¥ et (R

exp{-(h-h')

~ A

(h-h")} (6)

P(b) = B G

-1
uwhers det{..}] denotes the determinant of the enclosed matrix and R °~ is the

~

inverse of the covariance wmatrix R described above.

Let 31 be the hypothesis that s' is present in the vector (h-d'). Then

the probability density function for this situation will be of the form

B =~ (b e T (ki) Q
(zn) det[ﬁ] ~
with s' defined as
s(N,N)
s' = s(2N,2N)
0
0



Taking the ratio of these last two equations, we are able to formulate the
best test for establishing the presence of the signals', given a fixed false
ala™m protabiiity. This test is known as the likelihood ratio test and is

given by

A =P (1)/Py(h > =K ; for 5' being present in (b-h')

< K ; for 8' being absent in (h-h')

where K is a conscant to be determined. Taking the logarithm of A, we obtain

IR R TURTY S S o aonT o=l oy < K'; signal absent
(h-h'+s') § (b-h'+s') + (h-h'}" R ° (h-h') > K'; signal present @)

~

as our statistical test. For the .emainder of this development, let us assume

the covariance mcotrix R is of block T:.plitz form and the signal is totally
confined to a single p.xel. This can be done withcut loss of generality and
will greatly simplify the discussion to come.

Under the above assumption of a slowly varyiag covariance matrix, we can

easily show that the inverse coviriance matrix R is givcn by

Cf 0 . + 0 ng 6 - +« < < 0
0 Uf 0 e o 4 e & & @ 0 i(fg 0 . . 0
-1
R = R! 0 . 0 G 0 . « R! 9
= fg 8 fg ®)
o R' o . O 0' 0 . e o o 0
fg 3
0 R' 0 0 « + ¢ s s @ 0’
fg
where

T P S I S SR S I SR S I
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1
oL = ———p (10)
f ofz(l_pz)
1
¢ = ———
2 2
1-
L (1-p7)
e T
g 2
ofcg(l )

In these equations, of2 and ng denote the scene variances of (f-f') and
(8-8'), respectively, and p the correlation between the two images. If the
signal is located in pixel (MO,NO) where N < MO,NO < 2N, the left hand side
of equation 8 becomes

(-£'4s)?  2p(E-£'4s)-8)  (@-8)° (g£9?

- + -
2 2 2 2 2 2 2
O¢ (1-p%) ofog(l-p ) cx8 (1-p%) Og (1-p%)

20(£-£')(8-8") p(g-p")*
+ -

2 2,, 2
cfog(l-p ) A (1-p%)

(f-£'+s')  2p(f-£'+s)(8-8') p(g-")?
- - +
of(l-pz) ofcg(l-pz) 082(1-02)

(f-£)  2p(5-£)(-g") pP(3-g")°

- — (11)
2 2 2 2
Os(1-p%) ofog(l-p ) O (1-p7)
o wf '12 p()f 2
(£-£'45") - 5—(&-8") Eﬁ-.f.') - a——(a-&'ﬂ
- - g g N
X - | i <k (12)
: 0.2 (1-p%) o, (1-p%) > k'
:
! which reduces to




PO, 2
E,f.-z'*z') - o—-(-s'l')] ls' |2
| 8__ ~ =

2,. 2 =73, 2
o, (1-p%) o (1-p7)

(13)

v A
o =
+ +
Pk el

under optimum subtraction. From this last equation we see that the identifi-
cation and localization of a target signature within any image is totally
dependent on the effective signal-to-noise ratio of the target in the
weighted-difference image channel This is the type of detection criterion
one usually finds for ML signal detections. However, there is another aspect
to this target detection scheme .one needs to consider. Let us be more
specific.

The numerator of the first term of equation 13 can be interpreted as the
apparent contrast of the target in the (f-f') channel using an estimated mean
from the (g-g') channel. The ratio of the individual sceme variances is the
required scene weighting for optimum image subtraction. The denominator is
the reduced scene variance obtained from dual-channel weighted differeuncing.
Clearly, this last factor is very low for highly correlated channels and
results in a potentially large sigmal-to-clutter/noise ratio in this case.
However, it may not increase target detectability. The reason is an aspect of
local neighborhood demeaning, which was nst addressed by Margalit et al.
{1984) and must hold if low faise-alarm rates are desired. Specifically, the
local =aeighborhood mean estimate must be chosen to wminimise the difference
patwees itself and the pixel it is demeaning, while minimslly sffecting the
target signature. In other words, the second-order wmoments of {f-f£') sud

-~

(g-g') nust be minimized, in addition te their third-order monents, if cas

~ o

expects to optimally differentiate weak signals frem residusl clutter in the

dual-channel weighted-difference chanuel.
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3. KEY MAXI!:UM LIKELIHOOD PROCESSING ASSUMPTIONS

In the previous section, we found that a ML target detection technique
was applicable to dual-channel imagery if certain fundamental noise charac-
teristics were present. Specifically, we require the locally demeaned back-
ground clutter to be

a. Stationary

b. White

c. Gaussian distributed

d. Very close to zero variance.

These conditions are essential to successful impiementation of the ML method
for underresolved, weak target localization in remotely sensed data.
Ancillary to these points is the assumption that the multispectral images
involved in the processing are registered perfectly. In this section, we
shall discuss these points in more detail, focusing on how they pertain to
real imagery.

From Helstrom (1968), we know that ML detection of known signals in
clutter is an optimum process when the noise involved is stationary and white
Gaussian. In addition, the previous matiematical development illustrates that
it is highly desirable for the two locally demeaned images to have as small a
standard deQiation as possible to reduce potential false alarms. In contrast,
raw optical imagery rarely has these properties and must be modified if one
wishes to apply the ML approach to target detection. HKunt and Cannon (1976)
auggested that an image can be transformed into the desired statistical state
by the spr .priate demeaning process. They showed for one particular image

that a3 acighborhood average estimate of a local pixel mean could be subtracted

10
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from each individual pixel to yield a nearly Gaussian probability density
function for the resultant scene. However, the exact pixel weighting criteria
for optimum mean estimations was not discussed; therefore, only a pixel
blurring estimation was obtained.

Margalit et al. (1984) used an equal-weight neighborhood average and
varied array size, i.e., 3 by 3, 5 by 5, 7 by 7, etc., to yield the most
Gaussian fit. The criterion used was minimization of the absolute value of
the third-order wmoment of the demeaned image. No specific numbers for this
moment were cited in the reference, but a number of statistical tests were
used to establish normality. Their conclusion from this point of analysis was
the equal-weight neighborhood average estimation yielded nearly, but not
totally, Gaussian distributions. In fact, the authors suggested that the
resulting intensity histograms were more closely fit by the weighted sum of
Gaussian and uniform distributions. Let us see what type of third-moment
minimization occurs when an equal-weight neighborhood average mean estimation
is applied to some typical infrared imagery.

Figure 13 shows an infrared image of downtown San Jose and its associated
intensity histogram. These data were obtained with & DAEDALUS thermstic
wapper housed in a National Aeronautics and Space Administration U-2 aircraft
by using eight-bit quantization. The pixel footprint size is of the order of
30 by 30 meters. Table 1 gives the first four momeats, the skeuness, and the
kurtusis of the scene's intensity statistics, as well as the ceanter 11 by 11

portion of the autocovariance matrix for the 482- by 482-pixel image. I[n this

3 Because of the large number of figures and tables in this repost relative to
the amount of text, these illustrations are placed at the end of the report
beginning on page 15.

11



table, each element of the autocovariance matrix has been multiplied by 100.
The histogram plot and table 1 show that the scene statistics are non-
Gaussian. The intensity statistics are skewed and possess a large, negative
third-order moment.

Figures 2 through 7 depict the resulting scenes and associated intensity
histograms for locally demeaned versions of figure 1 using window sizes of 3
by 3, Sby 5, 7by 7, 9 by 9, 11 by 11, and 13 by 13, respectively. Tables 2
through 7 summarize the key image statistics of these figures. Comparisons of
the figures and tables show that equal-weight mean estimation produces imagery
that is smaller in scepe variance and nearly white Gaussian. That is, each of
the demeaned images have first-order momeants cloae to zero, reduced variance,
delta-function like autocovariances, and inteasity distributions that appear
symeetrical in shape. These properties degrade will: increasing window size.
The degradation is a consequence of the larger window sizes performing a poor
quality, low-pass filtering estimate of the local mean. They are actually
estimating a wmore global-like image wean. Ia any event, the third-order
moment never really approaches a value close to zero for any of these windows,
as required for a Gaussian probability demsity function. Based on the
Margalit et al. (1984) criteria: the 3- by 3-averaging windew would be
selected as the optimum processing window. This can be szeq by to@paring the
third-order womeats found in tables 2 through 7 and by observing that the
absolute wvalus of -23.68 in table 2 is smallest. However, this is still a
lavge value and suggests that the 3 by 3 window does not yield os geood 4
Gaussiaa PDF as one would like for optimum ML processing.

Figure 8 is a DAEDALUS image of Los Gatos and its surrounding mcaatain
area. [Its inteusity frequency distribution is clearly more non-Gaussian than

the San Jose scene. Table 8 depicts the key image statistics for the image
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and the center 11 by 11 portion of its autocovariance matrix. Figures 9
through 11 and the associated intensity histograms are the resulting images
generated by equal-weight mean estimation subtraction using 3- by 3-, 5- by
5-, and 7- by 7-processing windows, respectively. Tables 9 through !i
summarize the key image statistics of these figures, respectively. As bafore,
the resulting images appear to possess nearly Gaussian intensity distriou-
tions, which degrade with increasing window size. However, the second- and
third-order moments are now both nonzero positive in all cases. (Recall for
the San Jose image that the third-order moment was nonzero negative for the
five processing windows used). Hence, the application of ML target detection
to the optimum demeaned Los Gatos image (again created by a 3- by 3-procassing
window) will suffer from the same nonoptimum conditions we found for the San
Jose scene.

Another key assumption in the previous ML developrent is the requirement
that two registesred images be available for processing. Optical sensor
systems are not able to stare at a poinﬁ perfectly, but have lorg- and
short-term drifts, as well as a jitter, affecting the scene positioning from
one instant to anether. The impact of any misregistration between the two

images is presently not known.
4. TOPICS FOR FURTHER INVESTIGATION

Besides the points discussed in the previous section, two additional
areas remain to be iavestigsted to clearly establisk the optimum application
of HL detection to optical imagery. One is to determine the best low-pass
filter for local neighborhcod wmean estimation; the other is the effect of

scene misregistration on ML image processing. For the former, we propose

13
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using least mean-square estimation to determine the best convolutional filter
for approximating the loczl mean about any one pixel. This will be done
theoretically, assuming typical image autocovariance functions, and experi-
mentally with real visible and infrared data. Comparisons between the two
approaches will be made. To a2ssess the impact ¢f scene misregistration oan ML
image processing, we propose a theoretical investigation of this effect using
known image autocovariance functions and various means of image sampling.
Computer simulations will be used to verify results.

In addition to these areas, we suggest that the technique described in
section 2 be extended to more than two spectral channels to determine if aay
additicnal improvement can be gained and, if so, under what conditions.
Example images from the LANDSAT and DAEDALUS can be used to verify these

projections

14
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Fgure 1. Oniginal :mage of Jowntown San Jose and 2ssocated intensity
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Table 1. Key statistical parameters for the original image of
downtown San Jose.

First-order moment (mean) = 86.2607

Second-order moment (variance) = 111.5682
Third-order moment = -597.0149
Fourth-order moment = 43634.3333

Skewness = -0.5066

3.5054

Kurtosis

26 27 29 31 35 37 33 31 29 28 26
26 28 30 32 36 38 35 32 30 29 27
27 30 32 35 41 45 40 35 32 30 28
29 32 34 39 46 52 40 39 35 32 29
29 33 36 41 53 67 35 42 36 33 29
34 38 43 30 73 100 13 50 43 38 33
30 33 37 42 35 67 33 41 36 32 29
30 33 35 39 46 33 46 39 34 31 28
29 31 33 36 40 &5 41 35 32 3¢ 27
28 30 31 33 35 39 36 32 30 28 26

Center 11!X11 Autocovariance matrix (x100)
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Table 2. Key statistical p.rameters for the 3- by 3-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.4461
Second-order moment (variance) = 31.9559
Third-order moment = -23,6814
Fourth-order moment = 3697.4117
Skewness = -0,1310
Kurtosis = 3.6207
2 1 2 2 5 2 3 2 2 1
0 0 -1 -4 -5 -6 -2 -1 0 -
~1 1 0 -1 0 -2 -1 -1 1 0
2 3 3 3 0 11 -2 2 4 4

1 4 4 2 -2 11 0 3 3 3 2
0 1 -1 -1 -2 8 0 -1 0 1 -1
-1 0 -1 -2 -6 0 -5 -4 -1 -1 -1
i 2 2 3 2 9 5 2 2 2 2

Canter 11X11 Autocovariance matrix (x100)
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Figure 3. The 5 by 5-demeaned image of downtown San Jose and associated
intensity histogram,



Table 3. Key statistical parameters for the 5- by 5-demeaned image
of downtown San Jose.

First-order moment (mean} = 0.4849
Second~order moment (variance) = 48.4504
Third~order moment = -83.6112
Fourth-order moment = 8462.3295
Skewness = -0.2479 .
Kurtosis = 3.6049
2 2 0 _ -1 4 8 1 =1 2 1
-1 -4 0 5 -2 A 0 1 0
0 2 -1 -6 1 8 -2 -7 -1 2 1
-2 -1 -7 -18 -11 1 =13 -16 -6 0 =2
-2 0 -7 =21 -6 25 -1 -19 -7 0 -2
7 12 7 -2 39 100 39 -2 8 12 7
-2 0 -7 -19 -1 25 -6 =21 -1 ] -2
-2 0 -6 -19 -13 1 -11 ~-18 -7 -1 -2
2 -1 -7 -2 8 1 -6 -1 2 0
0 1 0 -4 -2 5 0 -5 -1 1 0
2 1 -1 1 8 5 -1 0 2

Center 11X11 Autocovariance matrix (x100)
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Table 4. Key statistical parameters for the 7- by 7~demeaned image
of downtown San Jose.

First-order moment (mean) = 0.4958

Second-order moment (variance) = 57.2018
Third-order moment = -124.9375
Fourth-order moment = 11692.8372

Skewness = -0.2887

Kurtosis = 3.5735

2 0 -2 0 5 9 2 -1 -1 2
-1 -5 -5 0 -2 -6 =5 0
-2 -5 =12 -13 -5 -7 -4 -12 -4 -1

-1 -4 -12  -11 9 36 13 -10 -11 -3 -1
7 1 5 48 100 48 3 1 7 7
-3 =-11 -10 13 36 9 -1 -12 =3 -1

~1 <4 =13 -14 -7 =5 -13 -12 =5 -2
-1 -5 -6 -2 0 -5 -5 -1
2 2 -1 -1 2 0 -2 1 2

Canter 11X11 Autocovariance matrix (x100)
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M4=14120 M5=~0.3 ME6=3.55
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Figute 5. The 9 by 9demeancd 1mage of downtown San Jose and assocrated
intensity histogram,
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Table 5. Key statistical parameters for the 9~ by 9-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.5004

Second-order moment (variance) = 63.0182
Third-order moment = -151.0908
Fourth~order moment = 14120.6381

Skewness = -0.3020

Kurtosis = 3.5556
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-4 -8 -8 -2 16 41 20 -2 -8 =7 -3
3 2 4 13 53 100 53 13 4 2 4
-3 -8 -8 -2 20 41 16 -2 -8 -8 -4
-4 -8 -9 -5 6 17 7 -4 -10 -9 -4

Center 11%11 Autocovariance matrix (%x100)
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Figure 8. The 11. by 11-demeaned image of downtown San Jose and asiociated
intensity histogram,
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Table 6. Key statistical parameters for the 11- by ll-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.5023
Secand-order moment (variance) = 67.0573
Third-order moment = -173.0976
Fourth-order moment = 15981.7429
Skewness = -0.3152
Kurtosis = 3.5541

-9 -9 -8 -4 5 11 3 -4 -8 -8 )
-8 -8 -5 1 12 22 11 1 -4 -6 -7
-7 -6 -3 4 22 45 25 4 -3 -6 =7
-1 2 7 17 55 100 55 17 8 3 0
=7 -6 -3 4 25 45 22 4 -3 -6 -1
-7 -7 =5 0 11 22 12 1 -3 -8 -8
-7 -8 -8 -4 3 11 5 -4 -8 -9 -3

-6 -1 -1 -5 =2 & 1 -4 <1 -8 -6

Center 11%11 Autocovariance matrix (x100)
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Table 7. Key statistical parameters for the 13- by 13-demeaned image
of downtown San Jose.

0.5023

First-order moment (mean)

70.6836

Second-order moment (variance)
Third-order moment = ~193.7154
Fourth-order moment = 17664.4662

Skewness = -0.3259

Kurtosis = 3.5355

-9 -7 -4 v 8 14 7 -1 ~b -6 -7
-7 -5 -2 S 16 26 15 5 0 -3 =1
-7 ~& ¢ 7 25 47 28 8 1 -3 -6
0 5 11 21 57 100 517 21 11 5 0

=7 -4 -1 5 15 26 16 5 -1 -3 -7
-7 -6 -4 ~1 7 4 8 0 -4 -1 -9

Center 11x11 Autocovariance matiix (X100)
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Table 8. Key statistical parameters for the original image of
Los Gatos/mountains.

First-order moment (mean) = 78.9999

749.8423

Second-order moment (variance)

391.2464

it

Third~order moment

1049415.4249

Fourth-ordexr moment

Skewness 1.905E-02

1.8664

Kurtosis

65 66 67 68 69 70 70 69 68 67 §6
66 67 &8 69 7 72 12 71 59 68 66
66 68 69 n 74 75 15 73 71 69 67
67 68 71 135 17 80 19 75 72 69 67
67 69 12 75 8’2 89 84 76 72 &9 67
68 10 73 17 8% 100 8% 7 13 70 68
68 70 72 76 84 84 82 73 72 69 617
67 69 72 75 79 80 7 73 10 68 13
67 69 11 13 75 75 74 71 69 68 66
67 68 70 n i2 i2 n 6% 68 &7 66
66 67 69 69 76 70 69 68 67 66 65

Center 1ix11 Autocovariance satrix (x100)
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Table 9. Key statistical parameters for the 3- by 3-demeaned image of
Los Gatos area.

First-order moment (mean) = 0.4445
Second-order moment (variance) = 68.8058
Third-order moment = 165.3608
Fourth-order moment = 20367.5595
Skewness = 0.2897
Kurtosis = 4.3021
1 2 1 1 1 2 1 1 1 1 0
1 -1 -1 -3 -3 -1 -3 -3 -1 -1 =2
1 1 1 1 1 6 3 2 1

0 0 1 -2 =5 -2 -9 -1 2 0

1 1 1 2 3 6 1 1 1 0
-2 -1 1 -3 -3 -1 -3 -3 -1 -1 -
0 1 1 1 1 2 1 1 1 2 1

Center 11X11 Autocovariance matrix (X100)
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Table 10. Key statistical parameters for the 5- by 5-demeaned image of
Los Gatos area.

First-order moment (mean) = 0.4803
Second-order moment (variance) = 125.1046
Third-order moment = 354.4667
Fourth-order moment = 64869.2644
Skewness = 0.2533

Kurtosis = 4.1446

1 0 -1 0 0 0 0

0 -1 -3 -2 2 0 -2 -1 -1

0 1 =1 -6 -4 -4 -2 0

-1 0 -6 -17 -14 -1 -7 -14 -7 -1 -1
-1 0 -7 -19 2 37 11 -16 -8 ¢
3 -3 -12 38 100 38 -12 -3 3

0 -8 -16 11 37 2 -19 -7 0 -1

-1 -7 =14 =17 -1 -14 -17 -6 0 -1
1 0 -2 -4 2 -4 -6 ~1 1
-1 -1 -1 -2 0 2 -2 -3 -1 0

0 1 0 0 1 1 0 -1 0 i 1

Center 11X11 Autocovariance matrix (x100)
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Figure 11, The 7- by 7-demeaned image of the Los Gatos area and associated histogram,
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Table 11. Key statistical parameters for the 7- by 7-demeaned image of
Los Gatos area.

1

First-order moment (mean) = 0.4892

156.9263

Second-order moment (variance)
Third-order moment = 466.5482
Fourth-order moment = 98783.6512
Skewness = 0.2373

Kurtosis = 4.0113

0 -2 -3 -1 1 0 -1 0 0
0 -2 -6 -7 =5 -1 -4 =5 -3 -1
-1 =5 -1 -13 -7 -2 -8 -10 -5 -1

-1 -6 -13 -8 19 49 27 -5 -12 -6 -1

1 -3 -9 -2 49 100 49 -2 -9 -3 1
-1 -6 -12 ) 27 49 19 -8 -12 -6 -1
-1 -6 -12 -8 5 1C -2 -12 -13 -6 -1

-1 -5 -10 -8 -2 -7 -13 -11 -5 -1
-1 -3 -5 -4 =1 - -1 <6 =2 0
o 0 -1 0 1 -1 -3 -2 0 1

Center 11X]1 Autocovariance matrix (x100)
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